If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+384t+4=1284
We move all terms to the left:
16t^2+384t+4-(1284)=0
We add all the numbers together, and all the variables
16t^2+384t-1280=0
a = 16; b = 384; c = -1280;
Δ = b2-4ac
Δ = 3842-4·16·(-1280)
Δ = 229376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{229376}=\sqrt{16384*14}=\sqrt{16384}*\sqrt{14}=128\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(384)-128\sqrt{14}}{2*16}=\frac{-384-128\sqrt{14}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(384)+128\sqrt{14}}{2*16}=\frac{-384+128\sqrt{14}}{32} $
| 2x+8=15* | | s+s+2=3(s+4)+7 | | (14c-3c)+7c=94 | | 23=y/4-8 | | 5(3x-7)+7=7(2x-4) | | 4x(2x+3)=-2x^2-4 | | 3=3+2k | | 8(2r-5)=11 | | -8(x-9)+4=76 | | -9+5d=46 | | 145n=1 | | 8+5u=4u | | -11m+(-20)=35 | | -126=-6(1+4a) | | 8(x-9)+4=76 | | -7u^2+12u+2=0 | | -11m+-20=35 | | 5(3x-7)+7=(2x-4) | | 9.6(x-3.75)=28.8 | | 3.3=1.4-0.4y | | 3x-7=7x2+2 | | 12x-25=10x+30 | | 4.9t^2+50t+2=0 | | 0.5x+5=-3 | | 11b=11b | | 7-6(4k-8)=247 | | 4x(2x+3)=-2x-4 | | g-(-1)=12 | | 12x-24+10x+30=180 | | 6+3y-6=5y+20 | | 3/4=z/14 | | 5z+17z=44 |